LogoLogo
  • Introduction
    • What Is an Agent Application?
    • Core Concepts
    • Getting Started
  • GLIK Cloud
    • Getting Started
      • GLIK Cloud vs. GLIK Studio
    • Prompt Orchestration Interface
    • What Is a Workflow?
    • Workflow Editor
    • App Types (Overview)
    • Workspaces & Permissions
    • Enterprise Readiness & Compatibility
    • Security & Data Handling
  • Enterprise SaaS
    • Expense Policy Decision Engine
    • Compliance & Audit Automation
    • Compliance Advisor Copilot
  • App Types
    • Overview
    • Chatbot
    • Agent
    • Advanced Chat
    • Workflow
  • Templates
    • Overview
    • Policy Automation
      • Overview
        • Expense Policy Validator — Summary Sheet
        • Enterprise Policy Intelligence
      • Expense Policy Decision Engine
        • Expense Policy Decision Engine (Starter)
          • Practice Exercises
        • Expense Policy Decision Engine (Threshold Memory)
          • Practice Exercises
          • Threshold Agent Response Tuning Exercises
        • Expense Policy Decision Engine (Policy API Integration)
          • Practice Exercises
        • Expense Policy Decision Engine (Escalation & Conflict Resolution)
        • Expense Policy Decision Engine (Audit & Logging)
    • Compliance and Audit Automation
      • KYC/AML Review Copilot
        • Learning Track
      • Compliance Copilot – MiCA Reporting
        • Workflow Phases
        • Block-by-Block Guide
    • Compliance Advisors
      • Global Control Copilot – Cross-Jurisdiction Policy Interpreter
        • Input Combinations & Workflow Outcomes
        • Reference Input Payloads
        • Policy Retrieval via Input Routing
        • Input Logic & Routing Behavior
        • Predefined Policy Thresholds
    • Knowledge Systems
      • Overview
      • Compliance SOP Agent
    • Process Automation
    • Task Resolution Agents
      • Why Agentify Task Resolution
    • Work Coordination Agents
      • Escrow Agent Orchestration
    • Embedded Operational Copilots
    • Expense & ERP Agents
      • ERP Vendor AI Copilots and Agents
      • Custody Approval Workflow for Token Issuance
    • Inventory & Logistics Agents
    • Sales & Forecasting Agents
    • Plugin-Based Agent Platforms
  • Marketplace
    • Overview
    • Publishing Templates
  • System Architecture
    • Overview
    • Blocks & Nodes
      • Utilities
        • Start Block
        • End Node
        • HTTP Request
        • List Operator
      • Classifier Nodes
        • Question Classifier
      • Logic Blocks
        • IF/ELSE Branch
        • Iteration
        • Loop
      • Transform Blocks
        • Variable Assigner
        • Variable Aggregator
        • Parameter Extractor
        • Data Enrichment
        • Prompt Template
        • Code
      • Input & Extraction
        • Doc Extractor
        • Knowledge Retrieval
        • LLM Block
          • LLM Reasoning
          • Fallback to LLM Reasoning
        • Tool Node
        • Agent
        • Answer
    • GLIK Knowledge
      • Creating & Managing Knowledge
      • GLIK Knowledge Retrieval
      • Writing to Knowledge
      • Scoped Memory & Access Control
      • Injection & Variable Binding
      • Performance & Limits
    • Execution Model
      • Workflow Architecture
      • Flow Engine
      • Node Lifecycle
      • Protocol Compatibility & Schema Interoperability
      • Input Binding & Value Resolution
    • Memory & Variable Scope
      • Conversation Variables
      • Memory Layers (User, App, Org)
      • Memory Slot Injection
      • Memory Retention Policy
    • Decision Routing
      • Conditional Logic Engine
      • LLM Fallthrough Patterns
      • Policy Enforcement & Escalation Paths
    • Enterprise Orchestration
      • Policy-Driven Automation
      • Enterprise Modularity
      • Auditability & Governance
      • Explainability & Decision Transparency
    • Agentifying Legacy Systems
      • Why Legacy Systems Resist Change
      • Best Practices for Agentifying ERP Workflows
      • GLIK’s Wrap-Around Model
      • Agent Surfaces (PDF, OCR, API, UI)
      • No-API Memory-Based Control
      • Compliance & Risk Considerations
    • System Observability
      • Execution Logs
      • Save Points & Snapshots
      • Variable Debugging
      • Session Trace Viewer
  • Developers
    • Overview
    • GLIK Open Core
      • Deployment & Installation
      • CLI Reference
      • Security & Compliance
      • Customization Guide
      • Versioning & Updates
  • GLIK Roadmap
  • Deprecation
    • Orchestration Interface
      • Node Orchestration
        • Node
          • Start
          • End
          • Direct Reply
          • LLM
          • Question Classifier
          • Knowledge Retrieval
          • Code Execution
          • Doc Extractor
          • HTTP Request
          • Conditional Branch IF/ELSE
          • Iteration
          • List Operator
          • Parameter Extraction
          • Template
          • Tools
          • Variable Aggregator
          • Variable Assigner
      • Variables
      • Application Toolkits
      • File Upload
    • Chatbot Features
    • Dataset
      • Dataset Creation
      • Text Preprocessing and Cleaning
        • Advanced Configuration
      • Retrieval Test/Citation
    • Studio
  • Brand Kit & Identity
    • Logos & Visual Assets
    • Typography & Colors
    • Messaging Pillars
    • Product Screenshots
    • Diagrams & Icons
    • Company Boilerplate
    • Downloads (.zip)
  • Legal
    • Terms of Service
    • Privacy Policy
    • Cookie Policy
    • Trademark Notice
    • Acceptable Use Policy
    • Open Core License
Powered by GitBook

Platform

  • Open GLIK Cloud
  • Getting Started
  • Templates

Documentation

  • Core Concepts
  • GLIK Open Core
  • Security & Data Handling
  • Workspaces & Permissions

Company

  • RIvalz AI
  • Contact Support
  • Status Page

© 2023–2025 Rivalz Technologies Ltd.

On this page
  • Definition
  • Scenarios
  • Node Functionality
  • Configuration Example

Was this helpful?

  1. Deprecation
  2. Orchestration Interface
  3. Node Orchestration
  4. Node

Doc Extractor

Definition

LLMs cannot directly read or interpret document contents. Therefore, it's necessary to parse and read information from user-uploaded documents through a document extractor node, convert it to text, and then pass the content to the LLM to process the file contents.

Scenarios

  • Building LLM applications that can interact with files, such as ChatPDF or ChatWord;

  • Analyzing and examining the contents of user-uploaded files;

Node Functionality

The document extractor node can be understood as an information processing center. It recognizes and reads files in the input variables, extracts information, and converts it into string-type output variables for downstream nodes to call.

The document extractor node structure is divided into input variables and output variables.

Input Variables

The document extractor only accepts variables with the following data structures:

  • File, a single file

  • Array[File], multiple files

The document extractor can only extract information from document-type files, such as the contents of TXT, Markdown, PDF, HTML, DOCX format files. It cannot process image, audio, video, or other file formats.

Output Variables

The output variable is fixed and named as text. The type of output variable depends on the input variable:

  • If the input variable is File, the output variable is string

  • If the input variable is Array[File], the output variable is array[string]

Array variables generally need to be used in conjunction with list operation nodes. For detailed instructions, please refer to list-operator.

Configuration Example

In a typical file interaction Q&A scenario, the document extractor can serve as a preliminary step for the LLM node, extracting file information from the application and passing it to the downstream LLM node to answer user questions about the file.

This section will introduce the usage of the document extractor node through a typical ChatPDF example workflow template.

Configuration Process:

  1. Enable file upload for the application. Add a single file variable in the "Start" node and name it pdf.

  2. Add a document extractor node and select the pdf variable in the input variables.

  3. Add an LLM node and select the output variable of the document extractor node in the system prompt. The LLM can read the contents of the file through this output variable.

Configure the end node by selecting the output variable of the LLM node in the end node.

After configuration, the application will have file upload functionality, allowing users to upload PDF files and engage in conversation.

To learn how to upload files in chat conversations and interact with the LLM, please refer to Additional Features.

PreviousCode ExecutionNextHTTP Request

Last updated 3 months ago

Was this helpful?